
Semi-global read alignment in Unicycler-align

Comparison of long-read alignment tools

B. Common k-mersA. Minimap alignment C. Alignment seed D. Line tracing E. K-mer selection F. SeqAn alignment

BWA-MEM (v0.7.15-r1140)Unicycler-align BLAST (megablast, v2.6.0+) LAST (v843) BLASR (v5.3.f8bfa9c) GraphMap (v0.5.1)

Minimap efficiently finds approximate alignments 
between contigs and reads. These alignments are 
local (not semi-global) and only provide start/end 
coordinates (not a base-by-base alignment). 
Unicycler-align uses this alignment to identify 
relevant regions of the read and contig for use in 
subsequent steps.

This example shows a read which aligns to a long 
contig, overlapping past the contig end.

BWA-MEM finds the same alignment line as Unicy-
cler-align, though there are small gaps on both ends. 
It also reports a second alignment in the repetitive 
region. While this alignment is genuine, it is spurious 
when looking for the read’s single best alignment to 
the contig.

read start gap

Unicycler-align finds a single alignment between the 
read and contig, ignoring smaller alignments in the 
repetitive region. Its alignment is semi-global, leaving 
no end gaps.

Commands:
  bwa index contig.fasta
  bwa mem contig.fasta read.fastq

Command:
  unicycler_align --ref contig.fasta
    --reads read.fastq --sam out.sam

End gaps:
    Read start gap: 0 bp
    Contig end gap: 0 bp

BLASR finds a single alignment without an end gap, 
but the repetitive region causes a major deviation 
from the true alignment line. This results in an 
incorrect read position at the point of overlap.

GraphMap performs true semi-global alignment, 
leaving no end gaps, but its alignment deviates in 
the repetitive region. Like BLASR, it gives an 
incorrect read position at the point of overlap

Command:
  blasr read.fasta contig.fasta

Command:
  graphmap align -d read.fasta
    -r contig.fasta -o out.sam

End gaps:
    Read start gap: 10 bp
    Contig end gap: 0 bp

End gaps:
    Read start gap: 0 bp
    Contig end gap: 0 bp

End gaps (longest alignment):
    Read start gap: 35 bp
    Contig end gap: 49 bp

The selected common k-mers are then used as 
seeds in a banded chain alignment in SeqAn. This 
process performs dynamic programming alignment 
in a band around the common k-mers.

This algorithm spans gaps in k-mer seeds, and is 
therefore not hindered by regions lacking common 
k-mers (such as the gap from the previous step).

The final alignment is semi-global and extends until 
one of the sequences ends. Therefore, when the 
read overlaps the end of a contig (as is the case in 
this example), the alignment indicates the exact 
read position at the point of overlap.

A k-mer index (implemented as a hash table) 
identifies all common k-mers between the read and 
contig. Unicycler-align’s default k-mer size is 10, a 
relatively small value which allows for alignment of 
low identity reads.

In this example, the contig is adjacent to a loop in 
the graph. The contig contains repetitive sequence 
at its end, and the read extends past the end of the 
contig into more of this repetitive sequence. This is 
shown in the dot plot by the dense region of 
common k-mers at the top right.

Unicycler-align scores each common k-mer based 
on its neighbouring points. Nearby points that lie on 
or near the diagonal to the point contribute positively 
to the score, while nearby points away from the 
diagonal detract from the score.

This selects a point that is in a well matching region 
away from repeats – ideally one that is unambigu-
ously on the alignment line.

Starting with this point, Unicycler-align then traces 
a line outward in each direction. The line is made 
up of discreet segments, and the angle of each is 
selected with a hill climbing algorithm to maximise 
the proximity of the line to common k-mers.

As Unicycler-align performs semi-global alignment, 
the line tracing proceeds until a sequence end is 
reached, even in regions where the alignment is 
weak.

Common k-mers near the alignment line are 
extracted and all others are discarded.

Ideally, this will result in a dense collection of k-mers 
over the entire alignment. However, some regions 
can be sparse due to poor read identity or inexact 
line tracing. In this example, a deletion-heavy region 
in the middle of the read caused the alignment to 
deviate from a straight line. As a result, the line 
trace briefly diverged from the true alignment, 
leaving a small gap in the selected k-mers.

251000

252000

253000

254000

255000

256000

257000

258000

258801
(contig end)

0
(read start)

1000 2000 3000 4000 5000 6396
(read end)Read position

C
on

tig
 p

os
iti

on

BLAST extends the primary alignment line further 
than BWA-MEM, leaving only a small gap at the start 
of the read. It also reports additional alignments in 
the repetitive region.

Commands:
  makeblastdb -dbtype nucl -in contig.fasta
  blastn -db contig.fasta -query read.fasta

End gaps (longest alignment):
    Read start gap: 10 bp
    Contig end gap: 0 bp

LAST follows the main alignment line, though it is 
split into two parts at read position 4490. This results 
in a large end gap for the main alignment. LAST also 
reports many smaller alignments in the repetitive 
region.

Commands:
  lastdb -R01 contig_db contig.fasta
  lastal -Q1 contig_db read.fastq

End gaps (longest alignment):
    Read start gap: 35 bp
    Contig end gap: 650 bp

read start gap read start gap

alignment breakcontig end gap

deviation
deviation


